Bayesian multiple change points and segmentation: Application to homogenization of climatic series
نویسندگان
چکیده
منابع مشابه
A Bayesian approach to detecting change points in climatic records
Given distinct climatic periods in the various facets of the Earth’s climate system, many attempts have been made to determine the exact timing of ‘change points’ or regime boundaries. However, identification of change points is not always a simple task. A time series containing N data points has approximately N distinct placements of k change points, rendering brute force enumeration futile as...
متن کاملBayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...
متن کاملBayesian approach to change points detection in time series
Change points detection in time series is an important area of research in statistics, has a long history and has many applications. However, very often change point analysis is only focused on the changes in the mean value of some quantity in a process. In this work we consider time series with discrete point changes which may contain a finite number of changes of probability density functions...
متن کاملA Simple Bayesian Approach to Multiple Change-points
After a brief review of previous frequentist and Bayesian approaches to multiple change-points, we describe a Bayesian model for multiple parameter changes in a multiparameter exponential family. This model has attractive statistical and computational properties and yields explicit recursive formulas for the Bayes estimates of the piecewise constant parameters. Efficient estimators of the hyper...
متن کاملBayesian Analysis of Autoregressive Time Series with Change Points
The paper deals with the identification of a stationary autoregressive model for a time series and the contemporary detection of a change in its mean. We adopt the Bayesian approch with weak prior information about the parameters of the models under comparison and an exact form of the likelihood function. When necessary, we resort to fractional Bayes factor to choose between models, and to impo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2009
ISSN: 0043-1397
DOI: 10.1029/2008wr007689